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Critical percolation in high dimensions

Peter Grassberger
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~Received 8 February 2002; revised manuscript received 2 July 2002; published 10 March 2003!

We present Monte Carlo estimates for site and bond percolation thresholds in simple hypercubic lattices with
4–13 dimensions. Ford,6 they are preliminary, ford>6 they are between 20 and 104 times more precise
than the best previous estimates. This was achieved by three ingredients:~i! simple and fast hashing that
allowed us to simulate clusters of millions of sites on computers with less than 500 Mbytes memory;~ii ! a
histogram method that allowed us to obtain information for severalp values from a single simulation; and~iii !
a variance reduction technique that is especially efficient at high dimensions where it reduces error bars by a
factor of up to'30 and more. Based on these data we propose a scaling law for finite cluster size corrections.
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In spite of decades of intensive studies@1#, percolation
remains an active subject of research. While there has b
enormous progress in understanding percolation in two
mensions @2#, mainly because of conformal invarianc
progress in high dimensions has been much slower. It
been known since long time thatd56 is the upper critical
dimension@1#, and expansions ofpc in 1/(2d21) have been
given already more than 20 years ago. But up to now th
exists no detailed numerical study of logarithmic correctio
in d56, finite size corrections are not yet understood fod
.6, and even numerical estimates ofpc in d>6 are very
poor. One reason for this is obviously that straightforwa
simulations of large lattices ind>6 require huge amounts o
fast memory. This lack of stimulus by numerical verificatio
certainly was part of the reason for the slow analyti
progress.

It is the purpose of the present paper to improve on
situation by presenting precise numerical estimates ofpc
~and of finite cluster size corrections! for site and bond per-
colation on simple hypercubic lattices withd56 to d513.

Our main results are summarized in Table I, where
also include preliminary results ford54 andd55. We also
give the best previous estimates forpc and expansions in
1/(2d21). We shall discuss them later in more detail, b
here we just point out that our estimates are vastly better
all previous ones. They were possible, with rather mod
effort ~we used only fast PCs and Alpha work stations, w
altogether ca. 103 CPU hours!, due to several important in
gredients.

~1! We used as basic routine a standard breadth-first
sion of Leath’s algorithm which simulates single clusters.
do not use the popular Hoshen-Kopelman method since
would require prohibitively large memory if we want t
simulate large clusters. In Leath’s method, one writes
coordinates of each cluster site@which consist of a single
integer—see item~2! below# into a first-in–first-out queueQ,
where each new entry represents a newly wetted neighbo
the oldest entry in the queue.

~2! We used a simple but very efficient form of hashi
@3# for storing the information whether a site has alrea
been wetted or not. On Compaq Alpha work stations w
64-bit-long integers, we labeled lattice sites by a single lo
integer. Using as lattice sizeL, an odd number slightly
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smaller than 264/d, we label the neighbors of sitei as i 61,i
6L, . . . ,i 6Ld21. If we want to simulate bond percolatio
clusters with roughlyN sites, we find first the power of 2
nearest toN, 2k'N, and use it to obtain for each sitei its
key mi5 i (mod2k) ~notice that this is done most efficientl
by bitwiseAND!. Assume now that sitei with key mi is the
nth site wetted. Then an entry is written into themi th ele-
ment of an array of pointersSof size 2k. This element points
to thenth element of a structure (L,Q) whereQ is the above
queue andL is a linked list. InQ, the coordinatei is stored.
The element ofL remains empty, if the keymi had not been
encountered before. Otherwise, if some other sitej with the
same keymj5mi had been wetted in an earlier stepn8,n,
the old element ofS ~which had pointed ton8) is written in
the nth element ofL. In this way, we can deal with virtua
lattices of 264 sites, using 2k12Nmax storage places, wher
Nmax is an upper bound on the size of clusters to be sim
lated. The algorithm is slightly different for site percolatio
where a tested site has to be excluded from further gro
even if it is not wetted, in contrast to bond percolation.
also has to be modified on machines with only 32-bit-lo
integers where a pair of numbers replacesi and a pair of
coprime odd numbersL1 andL2, both slightly smaller than
232/d, replacesL.

This is not as storage efficient as the recent algorithm
Ref. @4#. But it works with usual~pseudo! randomnumber
generators~we used the four-tap generator with perio
2968921 of Ref.@5#!, while the algorithm of Ref.@4# needs a
randomfunctiongenerator. The most easily available rando
function generator today is the Data Encryption Standard@6#,
which is rather slow when implemented in software and
unproven quality for this application~it was developed for
entirely different purposes, and lacks any published theo
ical justification!.

~3! In order to estimate cluster statistics for several valu
of p from a single run at nominal valuep0, we use a trick
similar to the histogram methods used by Dickman Ref.@11#
for the contact process~see also Ref.@12#!. If a cluster with
n wetted sites andb nonwetted boundary sites was genera
with nominal valuep0, it contributes to the ensemble wit
p0 replaced byp with weight

W5~p/p0!n@~12p!/~12p0!#b. ~1!
©2003 The American Physical Society01-1
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TABLE I. Estimates ofpc for bond and site percolation ind54 to d513. Numbers in round brackets are single standard deviati
square brackets refer to the citations at the end of the paper. Ford.9 the best previous estimates backed by theory were given by
~presumably asymptotic! expansions~7! and~8!, while Eq.~9! was a heuristic guess. The estimates ford54 andd55 are preliminary, since
we do not yet understand the important corrections to scaling in these cases~all error bars in this paper include plausible worst case estim
of systematic errors!.

Bond Site
Previous Previous

d Present Best estimate Eq.~7! Present Best estimate Eq.~8! Eq. ~9!

4 0.1601314~13! 0.160130~3! @4# 0.15666092 0.1968861~14! 0.196889~3! @4# 0.19304456 0.19880605
5 0.118172~1! 0.118174~4! @4# 0.11664888 0.1407966~15! 0.14081~1! @4# 0.13793629 0.14004471
6 0.0942019~6! 0.09420~1! @8# 0.09365356 0.109017~2! 0.1079~5! @9# 0.10754047 0.10848530
7 0.0786752~3! 0.078685~3! @8# 0.07847711 0.0889511~9! 0.08893~2! @10# 0.08823220 0.08871655
8 0.06770839~7! 0.06770~5! @8# 0.06763062 0.0752101~5! 0.07485431 0.07512757
9 0.05949601~5! 0.05950~5! @8# 0.05946233 0.0652095~3! 0.06502556 0.06519119

10 0.05309258~4! 0.05307663 0.0575930~1! 0.05749265 0.05759880
11 0.04794969~1! 0.04794152 0.05158971~8! 0.05153203 0.05160316
12 0.04372386~1! 0.04371939 0.04673099~6! 0.04669616 0.04674559
13 0.04018762~1! 0.04018504 0.04271508~8! 0.04269312 0.04272853
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Instead of collecting histograms for cluster numbers w
fixed n and b ~which would have led to excessively larg
arrays!, we calculated on the fly three distributions: One f
the nominalp0 @which was chosen close topc as estimated
from short test runs and from Eqs.~7! and ~8!# and two for
neighboring valuesp65p06dp, using Eq.~1! for the latter.
Observables atp values in between~including pc) were ob-
tained by geometric~i.e., linear in logarithm! interpolation.
Having three values ofp instead of just two allowed us to
check that the error due to the interpolation was negligib

~4! Our main observable will be the numberM (t) of wet-
ted sites with ‘‘chemical distance’’t from the seed of the
cluster~i.e., the number of sites infected at timet, if cluster
growth is interpreted as spreading of an epidemic!. For d
.6 we expect its averagêM (t)& to become a constant a
the critical point, since the process is basically a branch
process with small corrections. But instead of using^M (t)&
itself, we obtain a less noisy signal by the following tric
which would give theexactensemble average ofM (t) if the
cluster growth indeed were a branching process@13#.

Let us assume we have a~still growing! clusterC with
M (t) sites wetted at stept, and denote byM 1(t) the number
of free neighbors, i.e., the number of sites thatcan bewetted
at stept11. The actual number wetted will fluctuate, but t
expected average number, conditioned onC and thus also on
M (t), is exactly given by

E@M ~ t11!uC#5pM1~ t !. ~2!

Thus the expected geometric increase of the number of
ted sites, still conditioned onC, is

E@M ~ t11!/M ~ t !uC#5pM1~ t !/M ~ t ! ~3!

and its weighted sample average over all clusters is
03610
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M ~ t !E@M ~ t11!/M ~ t !uC#

(
C

M ~ t !

5
p^M 1~ t !&

^M ~ t !&
. ~4!

Our estimate for the true ensemble average ofM (t) is then
finally

M ~ t !̂5 )
t850

t21

r ~ t8!. ~5!

Since we measured also the direct estimate^M (t)& and the
~co! variances of both estimates, we can also compute
variance of any linear combination of both. Ford54 and
d55, where both variances are comparable and the cov
ance is negative, a substantial achievement is obtained
taking as the final estimate the linear combination with
smallest variance.

An expression similar to Eq.~5! can be obtained also fo
the rms radius, if we replace the ratios in Eqs.~3! and~4! by
differences and the product in Eq.~5! by a sum. This would
also be exact and nonfluctuating if the cluster growth wer
branching process with translation invariance.

The variance reduction due to Eq.~5! is largest for small
t. Yet, for bond percolation ind511, it gave even for the
largestt(5200) a factor'1/1000 over using just̂M (t)&.
For d56 and t52000, the reduction was still by a facto
'140. Indeed, there were substantial improvements even
d54 and 5, while the improvement ind53 was marginal.
For site percolation the improvements were similar b
somewhat less dramatic.

We should note that we calculated alsoP(t), the prob-
ability that a cluster survives at leastt steps~i.e., has ‘‘chemi-
cal radius’’>t), the cluster size distributionP(n), and the
spatial extent of clusters withn sites. All of them gave vastly
1-2
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more noisy signals@since we could not use a similar varian
reduction trick as forM (t)] and were not used in estimatin
the critical point.

Results forM (t )̂ are shown in Figs. 1–3 ford56,7, and
11. In all these figures, we show results for bond percolat
Results for site percolation are similar albeit somewhat m
noisy. In the first two cases we checked explicitly that
cluster was larger than the virtual lattice sizeL ~which was
.500 in both cases!, so there are strictly no finite lattice siz
effects. Ford>9 this was no longer possible for the clust
sizes used here~typically up to 104–106 sites!, but we can
easily convince ourselves that also there finite size effects
negligible.

In each of the three figures, the critical pointpc is char-
acterized bydM(t )̂ /dt→0 for t→`. Ford.6 we also have
M (t )̂→const forp5pc , while we see a logarithmic diver
gence ind56 as predicted by the renormalization group@14#
~see Fig. 1!. Unfortunately, the detailed behavior ofM (t) in

FIG. 1. Plot ofM (t )̂ vs ln t for bond percolation ind56. Sta-
tistical errors are smaller than the width of the curves. The m
uncertainty in pinning downpc comes from the nonobvious an
somewhat subjective extrapolation tot→`.

FIG. 2. Plot of M (t )̂ vs t21/2 for bond percolation ind57.
Statistical errors are always smaller than half the distances betw
neighboring curves.
03610
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d56 has not yet been calculated, though the results of R
@14# and the fact thatn t ~the exponent controlling the corre
lation time! is 1, suggestM (t);(ln t)2/7 to leading order.
Therefore, and since it is notoriously difficult to verify loga
rithmic terms ~see, e.g., Refs.@15–17#!, we have not at-
tempted any detailed analysis.

From Figs. 2 and 3, we also see that corrections to sca
decrease strongly with increasing dimension ford.6. In
Fig. 2, we see a straight line forp5pc when plottingM (t )̂
against 1/At, showing that the leading correction term
}t20.5 in d57. Similarly, a straight line is obtained ford
511 when usingt22.18 ~Fig. 3!. All these~and similar results
for other values ofd.6 and for site percolation, not show
here! strongly suggest anomalous scaling,

M ~ t !5M`2const/tv(d), ~6!

similar to the scaling for self-avoiding walks ind.dc found
in Ref. @17#. But while the exponents were simply (d
2dc)/2 in Ref. @17#, they seem to depend less trivially ond
in the present case, although we cannot exclude the poss
ity that v(d)5(d2dc)/2 also here, and the observed dev
tions are due to higher-order corrections. The latter is ind
suggested by the results of Ref.@18#.

The constantsM` defined in Eq.~6! are plotted in Fig. 4
againstd26 on doubly logarithmic scale. They seem to fa
on parallel straight lines, suggesting a universal lawM`

21;(d26)2a with a50.7360.03. But a closer look re-
veals that deviations from this are significant~although they
are small!, suggesting that it holds neither ford→` nor for
d→6 exactly.

Let us finally discuss thepc values given in Table I. They
should be compared to the predictions@7#

pc,bond5s15s3/2115s4/2157s51••• ~7!

and @19#

pc,site5s13s2/2115s3/4183s4/41•••, ~8!

n

en

FIG. 3. Plot ofM (t )̂ vs t22.18 for bond percolation ind511.
Statistical errors are again smaller than half the distances betw
neighboring curves. The exponent 2.18 is chosen since it gives
straightest line.
1-3
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PETER GRASSBERGER PHYSICAL REVIEW E67, 036101 ~2003!
with s51/(2d21). The dots in these equations stand
higher powers ofs. It was suggested in Ref.@19# that they
can be approximated, for site percolation at least, by add
2/3 of the last term,

pc,site's13s2/2115s3/41415s4/12. ~9!

The full series are presumably only asymptotic. It is thua
priori not clear whether any of these equations should
good approximations to the present data. From Table I,
see that Eq.~9! is excellent in the range studied here, but
has wrong asymptotic behavior and should be worse than
~8! for d>15. As seen from Fig. 5, the agreement with E
~7! and ~8! is indeed better than could have been expec
For bond percolation the difference decreases roughly ass7.1

~instead ofs6), while for site percolation it decreases ass5.7

instead ofs5. Obviously the next terms in Eqs.~7! and ~8!
would be needed for a more detailed comparison.

Finally, we should remind of several heuristic formul
for pc values on various lattices. All earlyAnsätze of this
type were already refuted in Ref.@20# because they contra

FIG. 4. Log-log plot ofM`21 againstd2dc . Statistical errors
are smaller than the data symbols.
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dicted Eq. ~7! or ~8!. More recently, such heuristics hav
been discussed again in Ref.@21# and in the papers quote
there. We have not attempted any detailed comparison
view of their complete lack of theoretical basis.

In summary, we have presented vastly improved estima
for percolation thresholds on high-dimensional hypercu
lattices. They should be compared to improved series exp
sions and/or rigorous bounds. At present such results are
available, partly because it had seemed that they could no
compared to any numerical estimates. Apart from this,
methods used in the present paper should also be of us
other similar problems. These include simulations of per
lation backbones, conductivity exponents, percolation
more exotic lattices, directed percolation in high dimensio
and self-avoiding walks. In all these cases both the hash
and the variance reduction should be of help in simulat
larger systems with higher precision.

I thank Walter Nadler and Hsiao-Ping Hsu for discussio
and for carefully reading the manuscript.

FIG. 5. Log-log plot of the discrepancies between the simulat
results and Eqs.~7! and~8!. Error bars are smaller than the sizes
the symbols.
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